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Abstract
We show that the mode corresponding to a point of the essential spectrum of the
electromagnetic scattering operator is a vector-valued distribution representing
the square root of the three-dimensional Dirac’s delta function. An explicit
expression for this singular mode in terms of the Weyl sequence is provided
and analysed. The essential resonance occurs if the permittivity of an
object gets close to zero, which is often the case in plasmas and negative-
permittivity metamaterials. Such resonance would lead to a perfect localization
(confinement) of the electromagnetic field. Simultaneously, however, a portion
of electromagnetic energy is removed from the Hilbert space and therefore the
whole process may be viewed as absorption.

PACS numbers: 03.50.De, 41.20.−q, 12.10.−g

1. Introduction

The ability to manipulate the spatial distribution of the electromagnetic field is required
in many practical applications. For example, one may wish to create an antenna with
a very broad or a very narrow radiation pattern, localize and amplify light or transmit it
along a predefined optical path, accelerate charged particles or keep them tight within a
fusion chamber. In the presence of matter all possible spatial distributions are encoded
in the spatial spectrum of the electromagnetic scattering operator. The most basic field
distributions, which are easy to observe in microwave resonators, are called eigenmodes.
Manipulation thus amounts to a clever excitation of a particular eigenmode or a combination
of those. If almost all electromagnetic energy is carried by one of the modes, then we have a
resonance. The concept of electromagnetic resonances and eigenmodes is a natural description
of microwave resonators and waveguides [1], microstrip lines [2], and other simple, often,
infinite, homogeneous, or periodic structures [3–5]. In a recent paper [6] we have generalized
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this idea for arbitrary dielectric objects of finite extent. The strongest point of our generalization
was the incorporation of the full information about the spatial spectrum of the electromagnetic
scattering operator [7], which has both discrete eigenvalues and an essential (continuous) part.

In some applications, e.g. optoelectronics, plasmonics, photonics, near-field optics, the
electromagnetic field has to be confined within a very small volume of space (see, e.g.,
[8–10]). In research on metamaterials, where one strives for a negative permittivity material
with vanishing losses, an unusual ‘anomalous localized resonance’ is also encountered [11, 12].
In both plasmonic and metamaterial cases temporal dispersion leads to values of the dielectric
permittivity close to zero. In [6] we show that in the latter case an essential resonance
may occur. We also speculated that the modes associated with the essential spectrum of
the scattering operator may be highly localized in space. In particular, we argued that
the conditions on the essential resonance coincide with the situation where the so-called
plasmon is observed at a plasma-dielectric interface. Here we give a rigorous proof that the
localization (confinement) of the electromagnetic field is linked to the essential spectrum of
the electromagnetic scattering operator and provide the explicit form of the corresponding
spatial modes.

Our previous work on the essential spectrum [6, 7] was based on Mikhlin’s theory of
singular integral operators [13] which does not concern the shape of the modes. In fact, there
are very few examples of the analysis of the modes corresponding to the essential spectrum
of operators. In quantum mechanics, where the spectral theory is very advanced, the discrete
spectrum seems to be of more importance. There the essential spectrum is associated with the
unbounded motion of particles [14] and is, therefore, of little interest to physicists. Hence, we
had to find some suitable approach to this problem elsewhere.

To recover the structure of the modes corresponding to the electromagnetic essential
spectrum we resort here to Weyl’s definition of a spectrum (see, e.g., [14, 15]). This definition
states that a number λ is in the spectrum of the operator A if and only if there exists a sequence
{�n} in the space X such that

‖�n‖ = 1 (1)

and

lim
n→∞ ‖A�n − λ�n‖ = 0. (2)

Furthermore, λ is in the essential spectrum, if there is a singular sequence satisfying (1)–(2),
i.e. a sequence which contains no convergent subsequence. If X is a complete Hilbert space,
then, obviously, such a singular sequence will not (strongly) converge to any function from X,
although it may weakly converge to zero. As we know, sequences that do (strongly) converge
to some function on X generate eigenfunctions or eigenmodes corresponding to the point
spectrum—eigenvalues. By analogy we may associate essential modes with the essential
spectrum. An alternative term, which, perhaps, better reflects the nature and structure of the
particular modes obtained here, would be singular modes.

The difference between the Mikhlin and the Weyl approaches can be summarized as
follows. Mikhlin analysed the mapping properties of singular integral operators, similar to the
one we have in three-dimensional electromagnetic scattering. In particular, he was interested
in their Fredholm property (the range is closed and the dimensions of the kernel and cokernel
are finite). He proved that the symbol of singular integral operators provides all the necessary
information. Roughly speaking, the operator is Fredholm, if and only if its symbol, which,
in general, is a matrix-valued function, is invertible. The symbol of the electromagnetic
scattering operator turns out to be a parametric function of the permittivity and is invertible if
and only if the dielectric permittivity does not become zero at any point in R3. In fact, this
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is the condition on the existence of the solution of the electromagnetic scattering problem. It
was rather straightforward to employ this condition and thus the Mikhlin approach to recover
the essential spectrum. Indeed, the standard definition of a spectrum considers the residual
operator

[A − λI ]−1 , (3)

and looks for points λ where it fails to exist. The essential spectrum is defined as the set of λ’s
for which the operator [A−λI ] fails to be Fredholm. Hence, we only had to derive the symbol
of [A − λI ] and see if it fails to be invertible for some λ’s. In the isotropic electromagnetic
case this happens for λ = ε(x, ω)/ε0; thus the essential spectrum is comprised of all values of
the relative permittivity.

The Weyl approach takes a different and by far less explored route focusing on the shape
of eigenfunctions. Strictly speaking, the original Weyl’s definition of the essential spectrum
was meant for self-adjoint operators only. The electromagnetic scattering operator is not self-
adjoint nor is it even normal. In the modern literature, however, the Weyl definition (1)–(2)
corresponds to the approximate point spectrum of arbitrary operators. Since we have already
derived the essential spectrum in a rigorous way, the Weyl approach to recovering the modes
was more of a lucky guess, with a little hint from the theory of pseudospectrum of non-normal
operators [16]. In our view, the relation between the Mikhlin and the Weyl approaches to the
recovery of the essential spectrum of arbitrary operators requires further analysis.

2. The square root of the delta function

Before going into the details of the electromagnetic case we shall introduce a peculiar function
that is later used to generate the essential modes. On the one hand, the sequence of such
functions should be singular, as required by the definition mentioned above. On the other hand,
the application of (2) to electromagnetics (in L2-norm) and consistency with the previously
obtained rigorous results on the essential spectrum [7] require that the square of this function
should behave like the Dirac delta function, i.e., must have the sifting property. Hence, what
we need is a square root of the delta function.

From time to time the square roots of delta functions appear in the literature. Mostly,
though, just as a curious example of a non-convergent sequence, see [17, p 299] and
[18, p 81]. A more modern and rigorous approach to such functions is the Colombeau
algebra [19], where one studies the products of distributions and encounters m-singular delta
functions, which are almost identical to what we are after. At present, the main applications
of the Colombeau algebra are nonlinear equations (e.g. hydrodynamics, elastodynamics and
general relativity), singular shock waves in nonlinear conservation laws and propagation of
delta-like waves in linear media with discontinuous parameters. In other words, this algebra
is applied whenever a potentially meaningless product of generalized functions is stumbled
upon. The present apparent emergence of the Colombeau algebra in the recovery of the
essential spectrum seems to be new and can, probably, be generalized. The main difference
from the established applications of this algebra is in the use of the fractional powers (roots)
of distributions rather than their higher powers (squares, cubes, etc).

Unfortunately, we could not find any explicit derivation of the required distribution in
the literature. The available one-dimensional and scalar three-dimensional [14, pp 74–75]
examples are of no use to us, since the electromagnetic essential spectrum is a purely three-
dimensional phenomenon and our function and its Fourier transform had to have a very special
vectorial structure. In view of the potential usefulness of the obtained result in other areas of
research, we have decided to devote this entire section to the analysis of the square root of
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the three-dimensional delta function. The proof of the following theorem is, however, rather
technical and can be skipped in the first reading.

Theorem 1. The vector-valued function

�(α, x, xc) =
(

2

3

)1/2

π−3/4α5/4(x − xc) exp
(
−α

2
|x − xc|2

)
, (4)

where x, xc ∈ R3 and α > 0, has the following properties:

(i) It is normalized in the sense that

‖�(α, x, xc)‖2 = 1. (5)

(ii) The sequence of such functions

�(αn, x, xc), αn > αn−1, n = 1, 2, . . . (6)

does not have a convergent subsequence.
(iii) Its Fourier transform is given by

�̃(α, k, xc) = −i

(
2

3

)1/2

π−3/4α−5/4k exp

(
− 1

2α
|k|2 − ik · xc

)
. (7)

(iv) It is a generator of the square-root of the Dirac delta-function, i.e., with any bounded
continuous function f (x) its square has the sifting property

lim
α→∞

∫
x∈R3

f (x) |�(α, x, xc)|2 dx = f (xc). (8)

(v) It is orthogonal to bounded vector-valued functions, i.e., for any |V(x)| < ∞, x ∈ R3,

lim
α→∞ 〈V, �〉 = lim

α→∞

∫
x∈R3

�T(α, x, xc)V(x) dx = 0. (9)

(vi) It is ‘invisible’ to weakly singular operators with finite spatial support, i.e.

lim
α→∞

∥∥∥∥
∫

x∈D

K(x, x′)
|x − x′|β �(α, x, xc) dx

∥∥∥∥
2

= 0, (10)

where K(x, x′), x, x′ ∈ R3 is a bounded tensor-valued function, β < 3, and the norm is
defined over the spatial support D.

Proof. (i) To prove the normalization property we simply compute

‖�(α, x, xc)‖2
2 = 2

3
π−3/2α5/2

∫
x∈R3

|x − xc|2 e−α|x−xc|2 dx

= 2

3
π−3/2α5/2

∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
r4 e−αr2

sin θ dϕ dθ dr

= 2

3
π−3/2α5/24π

(4 − 1)!!

2(2α)2

(π

α

)1/2
= 1, (11)

where we have used the following standard integral:∫ ∞

0
r2n e−pr2

dr = (2n − 1)!!

2(2p)n

√
π

p
, p > 0, n = 0, 1, 2, . . . (12)

(ii) Suppose that there is a subsequence �(αn, x, xc), where αn > αn−1, n = 1, 2, . . . ,

which converges in norm. Then, for any ε > 0 there exists N such that for all m, n > N we
have

‖�(αm, x, xc) − �(αn, x, xc)‖2 � ε. (13)
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However, in our case we obtain

‖�(αm, x, xc) − �(αn, x, xc)‖2 =
∫

x∈R3
|�(αm, x, xc) − �(αn, x, xc)|2 dx

=
∫

x∈R3
|�(αm, x, xc)|2 dx +

∫
x∈R3

|�(αn, x, xc)|2 dx

− 2
∫

x∈R3
�T (αm, x, xc)�(αn, x, xc) dx

= 2 − 27/2 α
5/4
m α

5/4
n

(αm + αn)5/2

∫
x∈R3

|�(αm + αn, x, xc)|2 dx

= 2 − 27/2 α
5/4
m α

5/4
n

(αm + αn)5/2
. (14)

If we now fix n > N and let m > N go to infinity, then the last term tends to zero leaving us
with a constant (two), which, obviously, cannot be made smaller than an arbitrary ε > 0. This
proves that there are no convergent subsequences.

(iii) The Fourier transform is obtained by a direct computation as follows:

�̃(α, k, xc) = (2π)−3/2
∫

x∈R3
�(α, x, xc) exp(−ik · x) dx

= (2π)−3/2

(
2

3

)1/2

π−3/4α5/4
∫

x∈R3
(x − xc) exp

(
−α

2
|x − xc|2 − ik · x

)
dx

= (2π)−3/2

(
2

3

)1/2

π−3/4α5/4 exp(−ik · xc)

∫
y∈R3

y exp
(
−α

2
|y|2 − ik · y

)
dy

= (2π)−3/2

(
2

3

)1/2

π−3/4α5/4 exp(−ik · xc)(i∇k)

∫
y∈R3

exp
(
−α

2
|y|2 − ik · y

)
dy

= (2π)−3/2

(
2

3

)1/2

π−3/4α5/4 exp(−ik · xc)(i∇k)

∫ ∞

−∞
exp

(
−α

2
y2

1 − ik1y1

)
dy1

×
∫ ∞

−∞
exp

(
−α

2
y2

2 − ik2y2

)
dy2 ×

∫ ∞

−∞
exp

(
−α

2
y2

3 − ik3y3

)
dy3. (15)

Each of the one-dimensional integrals above gives∫ ∞

−∞
exp

(
−α

2
y2

n − iknyn

)
dyn =

∫ ∞

−∞
exp

[
−α

2

(
y2

n + i
2

α
knyn

)]
dyn

=
∫ ∞

−∞
exp

[
−α

2

(
y2

n + 2yn

(
i
kn

α

)
+

(
i
kn

α

)2

−
(

i
kn

α

)2
)]

dyn

= exp

(
− 1

2α
k2
n

)∫ ∞

−∞
exp

[
−α

2

(
yn +

i

α
kn

)2
]

dyn

= exp

(
− 1

2α
k2
n

)∫ ∞

−∞
exp

[
−π

(√
α

2π
yn +

i√
2πα

kn

)2
]

dyn

=
(

2π

α

)1/2

exp

(
− 1

2α
k2
n

) ∫ ∞+ib

−∞+ib
exp[−π(z + ib)2]d(z + ib)

=
(

2π

α

)1/2

exp

(
− 1

2α
k2
n

)
. (16)
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Substituting (16) in (15) we arrive at our result:

�̃(α, k, xc) = i(2π)−3/2

(
2

3

)1/2

π−3/4α5/4 exp(−ik · xc)∇k

[(
2π

α

)3/2

exp

(
− 1

2α
|k|2

)]

= −i(2π)−3/2

(
2

3

)1/2

π−3/4α5/4

(
2π

α

)3/2 1

2α
exp

(
− 1

2α
|k|2 − ik · xc

)
∇k|k|2

= −i

(
2

3

)1/2

π−3/4α−5/4k exp

(
− 1

2α
|k|2 − ik · xc

)
. (17)

Note that with this choice of the Fourier transform we also have

‖�̃(α, k, xc)‖2 = 1. (18)

(iv) To prove the sifting property we split the integration domain into two parts, i.e.,

lim
α→∞

∫
x∈R3

f (x) |�(α, x, xc)|2 dx

= lim
α→∞

[∫
x∈R3\V (δ)

f (x) |�(α, x, xc)|2 dx +
∫

x∈V (δ)

f (x) |�(α, x, xc)|2 dx
]

= lim
α→∞

∫
x∈R3\V (δ)

f (x) |�(α, x, xc)|2 dx + lim
α→∞

∫
x∈V (δ)

f (x) |�(α, x, xc)|2 dx,

(19)

where V (δ) is some volume surrounding the point xc. Now we shall choose V (δ) in such a
way that the first (outer) term in the expression above gives zero. We start by considering a
general case where x ∈ V (δ), if |x − xc| � δ, and δ is some function of α. Then,

lim
α→∞

∫
x∈R3\V (δ)

f (x) |�(α, x, xc)|2 dx

� max
x∈R3

|f (x)| lim
α→∞

∫
x∈R3\V (δ)

|�(α, x, xc)|2 dx (20)

= max
x∈R3

|f (x)| lim
α→∞

2

3
π−3/2α5/2

∫ ∞

r=δ

∫ π

θ=0

∫ 2π

ϕ=0
r4 e−αr2

sin θ dϕ dθ dr

= 8π

3
π−3/2 max

x∈R3
|f (x)| lim

α→∞ α5/2
∫ ∞

r=δ

r4 e−αr2
dr. (21)

Successive integration by parts gives∫ ∞

r=δ

r4 e−αr2
dr = 3

4α2

∫ ∞

r=δ

e−αr2
dr +

(
δ3

2α
+

3δ

4α2

)
e−αδ2

. (22)

Using this result we continue to analyse the upper bound of (20) as follows:

lim
α→∞

∫
x∈R3\V (δ)

|�(α, x, xc)|2 dx = lim
α→∞

8π

3
π−3/2α5/2

∫ ∞

r=δ

r4 e−αr2
dr

= 8π

3
π−3/2 lim

α→∞ α5/2

[
3

4α2

∫ ∞

r=δ

e−αr2
dr +

(
δ3

2α
+

3δ

4α2

)
e−αδ2

]

= 2√
π

lim
α→∞ α1/2

∫ ∞

r=δ

e−αr2
dr + lim

α→∞
8

3
√

π

(
1

2
δ3α3/2 +

3

4
δα1/2

)
e−αδ2

. (23)
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Now, choosing, for example, δ = α−1/3, we arrive at

lim
α→∞

∫
x∈R3\V (δ)

|�(α, x, xc)|2 dx

= 2√
π

lim
α→∞

∫ ∞

r
√

α=α1/6
e−(r

√
α)2

d(r
√

α) + lim
α→∞

8

3
√

π

(
1

2
α1/2 +

3

4
α1/6

)
e−α1/3

� 2√
π

lim
α→∞

∫ ∞

z=α1/6
e−z dz = 2√

π
lim

α→∞ e−α1/6 = 0. (24)

Hence, with this particular choice of V (δ) the first (outer) term in (19) is zero. Now we shall
use the same V (δ) in the second (inner) term. Taking into account that f (x) is a continuous
function, and that with our choice of δ the integration volume V (δ) tends to the point xc, we
can apply the mean-value theorem, i.e.,

lim
α→∞

∫
x∈V (δ)

f (x) |�(α, x, xc)|2 dx = lim
α→∞ f (xα)

∫
x∈V (δ)

|�(α, x, xc)|2 dx

= f (xc) lim
α→∞

∫
x∈V (δ)

|�(α, x, xc)|2 dx, (25)

where xα ∈ V (δ), and xα → xc as α → ∞. Thus, to prove the sifting property it remains to
show that

lim
α→∞

∫
x∈V (δ)

|�(α, x, xc)|2 dx = 8

3
√

π
lim

α→∞ α5/2
∫ α−1/3

r=0
r4 e−αr2

dr

= 8

3
√

π
lim

α→∞

∫ α1/6

r
√

α=0
(r

√
α)4 e−(r

√
α)2

d(r
√

α)

= 8

3
√

π
lim

α→∞

∫ α1/6

z=0
z4 e−z2

dz

= 8

3
√

π

∫ ∞

z=0
z4 e−z2

dz = 1. (26)

Finally, we remark that the above proof holds with any δ = α−1/m, where m � 3.
(v) We prove the orthogonality property by considering the absolute value of the dot-

product, i.e.,∣∣∣ lim
α→∞ 〈V(x),�(α, x, xc)〉

∣∣∣
=

∣∣∣∣∣ lim
α→∞

√
2

3
π−3/4α5/4

∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
ΘT(θ, ϕ)V(r, θ, ϕ)r3e− α

2 r2
sin θ dϕ dθ dr

∣∣∣∣∣
� C sup

x∈R3

|ΘT(θ, ϕ)V(x)| lim
α→∞ α5/4

∫ ∞

r=0
r3e− α

2 r2
dr

= C sup
x∈R3

|ΘT(θ, ϕ)V(x)| lim
α→∞ α5/4 1

2(α/2)2

= 2C sup
x∈R3

|ΘT(θ, ϕ)V(x)| lim
α→∞ α−3/4 = 0, (27)

where 0 < C < ∞,Θ = (x − xc)/|x − xc|, and the following standard integral was used:∫ ∞

0
r2n+1 e−pr2

dr = n!

2pn+1
, p > 0, n = 0, 1, 2, . . . (28)
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(vi) In the case of a weakly singular integral operator with finite spatial support D we
proceed as follows:

lim
α→∞

∥∥∥∥
∫

x∈D

K(x, x′)
|x − x′|β �(α, x, xc) dx

∥∥∥∥
2

2

= lim
α→∞

∫
x′∈D

∣∣∣∣
∫

x∈D

K(x, x′)
|x − x′|β �(α, x, xc) dx

∣∣∣∣
2

dx′

= lim
α→∞

∫
x′∈D

∣∣∣∣
∫

x∈D

K(x, x′)
|x − x′|β [�2(α, x, xc) + �1(α, x, xc)] dx

∣∣∣∣
2

dx′

� lim
α→∞

∫
x′∈D

∣∣∣∣
∫

x∈D

K(x, x′)
|x − x′|β �1(α, x, xc) dx

∣∣∣∣
2

dx′

+ lim
α→∞

∫
x′∈D

∣∣∣∣
∫

x∈D

K(x, x′)
|x − x′|β �2(α, x, xc) dx

∣∣∣∣
2

dx′, (29)

where the original function � is split into two complementary parts with respect to a small
volume around xc in such a way that

�(α, x, xc) = �1(α, x, xc) + �2(α, x, xc),

�1(α, x, xc) = 0, x ∈ R3\V (δ),

�2(α, x, xc) = 0, x ∈ V (δ).

(30)

The last integral in (29) is estimated like this

lim
α→∞

∫
x′∈D

∣∣∣∣
∫

x∈D

K(x, x′)
|x − x′|β �2(α, x, xc) dx

∣∣∣∣
2

dx′

= lim
α→∞ ‖K�2‖2 � ‖K‖2 lim

α→∞ ‖�2‖2 = 0, (31)

where we have used the fact that the norm of a weakly singular operator on D is bounded,
and the previously derived property (23)–(24). This means that we take δ = α−1/m,m � 3.
The remaining integral in (29) requires considerably more work. We shall split the domain of
integration over x′ into two parts using yet another small volume V (δ′) surrounding the point
xc. Then, taking (30) into account, we obtain

lim
α→∞

∫
x′∈D

∣∣∣∣
∫

x∈D

K(x, x′)
|x − x′|β �1(α, x, xc) dx

∣∣∣∣
2

dx′

= lim
α→∞

∫
x′∈D\V (δ′)

∣∣∣∣
∫

x∈V (δ)

K(x, x′)
|x − x′|β �1(α, x, xc) dx

∣∣∣∣
2

dx′

+ lim
α→∞

∫
x′∈V (δ′)

∣∣∣∣
∫

x∈V (δ)

K(x, x′)
|x − x′|β �1(α, x, xc) dx

∣∣∣∣
2

dx′. (32)

Proceeding with the first of the above integrals we apply the Cauchy–Schwartz inequality and
arrive at

lim
α→∞

∫
x′∈D\V (δ′)

∣∣∣∣
∫

x∈V (δ)

K(x, x′)
|x − x′|β �1(α, x, xc) dx

∣∣∣∣
2

dx′

� lim
α→∞

∫
x′∈D\V (δ′)

∫
x∈V (δ)

∣∣K(x, x′)Θ
∣∣2

|x − x′|2β
dx

∫
x∈V (δ)

|�1(α, x, xc)|2 dx dx′

� sup
x,x′∈D

|K(x, x′)Θ|2 × lim
α→∞

∫
x′∈D\V (δ′)

×
∫

x∈V (δ)

1

|x − x′|2β
dx dx′

∫
x∈V (δ)

|�1(α, x, xc)|2 dx. (33)
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Now, if we choose the spherical volume V (δ′) with radius δ′ to be larger than the spherical
volume V (δ) with radius δ, then for x ∈ V (δ) and x′ ∈ D\V (δ′), the distance factor |x − x′|
will be bounded from below by the difference of the radii of the two volumes. In estimate
(31) we have used δ = α−1/m,m � 3. Hence, for sufficiently large α we can choose
δ′ = δ1/n = α−1/(nm) with n � 2. In this case we have

lim
α→∞

∫
x′∈D\V (δ′)

∫
x∈V (δ)

1

|x − x′|2β
dx

∫
x∈V (δ)

|�1(α, x, xc)|2 dx dx′

� lim
α→∞ sup

x∈V (δ),x′∈D\V (δ′)

1

|x − x′|2β

∫
x′∈D\V (δ′)

∫
x∈V (δ)

dx dx′

×
∫

x∈V (δ)

|�1(α, x, xc)|2 dx

� C lim
α→∞

δ3

(δ′ − δ)2β
= C lim

α→∞
δ3

(δ1/n − δ)2β
= C lim

α→∞
δ3−1/n

(1 − δ1−1/n)2β

= C lim
α→∞

α(1−3n)/(nm)

(1 − α(1−n)/(nm))2β
= 0, (34)

i.e., the first of the two integrals in (32) is zero. Applying the Cauchy–Schwartz inequality we
estimate the last integral in (32) as follows:

lim
α→∞

∫
x′∈V (δ′)

∣∣∣∣
∫

x∈V (δ)

K(x, x′)
|x − x′|β �1(α, x, xc) dx

∣∣∣∣
2

dx′

� K lim
α→∞

∫
x′∈V (δ′)

∫
x∈V (δ)

1

|x − x′|β dx
∫

x∈V (δ)

|�1(α, x, xc)|2
|x − x′|β dx dx′

� L lim
α→∞(δ′)3−β

∫
x′∈V (δ′)

∫
x∈V (δ)

|�1(α, x, xc)|2
|x − x′|β dx dx′

� M lim
α→∞(δ′)2(3−β)

∫
x∈V (δ)

|�1(α, x, xc)|2 dx

= N lim
α→∞(δ′)6−2β = N lim

α→∞ α−(6−2β)/(nm) = 0, (35)

where δ′ = α−1/(nm),m � 3, n � 2, while 0 < β < 3 by the conditions of the theorem. Thus,
we have shown that (29) is, indeed, zero. This completes the proof of the theorem. �

3. Electromagnetic singular modes

Consider the volume integral equation of electromagnetic scattering on a nonmagnetic object
of finite spatial extent D:

Ein(x, ω) = E(x, ω) − [
k2

0(ω) + ∇∇·] ∫
x′∈D

g(x − x′, ω)χ(x′, ω)E(x′, ω) dV , (36)

where Ein and E are the incident and total electric fields, correspondingly. This equation is
obtained directly from the frequency-domain Maxwell’s equations and takes into account the
radiation condition at infinity in a most natural form. The medium parameters are contained
in the contrast function χ , which in terms of the complex permittivity function ε will look like

χ(x, ω) = ε(x, ω)

ε0
− 1 = εr(x, ω) − 1. (37)

The vacuum wavenumber is k0 = ω/c, and the scalar Green’s function is given by

g(x, ω) = eik0|x|

4π |x| . (38)
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Carrying out the two spatial derivatives we arrive at the following singular integral equation:

Ein(x, ω) =
[

1 +
1

3
χ(x, ω)

]
E(x, ω) − lim

δ→0

∫
x′∈D\|x−x′ |<δ

G0(x − x′)χ(x′, ω)E(x′, ω) dx′

−
∫

x′∈D

G1(x − x′, ω)χ(x′, ω)E(x′, ω) dx′. (39)

For the definitions of the Green tensors G0 and G1 we refer to our previous publication on this
subject [7].

Theorem 2. The vector-valued function �(α, x, xc) defined in theorem 1 generates the
essential mode of the electromagnetic field corresponding to the point of essential spectrum

λess = εr(xc, ω). (40)

Proof. Since we have already established the normalization (i) and the singularity of the
sequence (ii) in theorem 1, we only need to prove the following analogue of (2),

V = lim
α→∞

∥∥∥∥
[

1 +
1

3
χ(x, ω)

]
�(α, x, xc)

− lim
δ→0

∫
x′∈D\|x−x′|<δ

G0(x − x′)χ(x′, ω)�(α, x′, xc) dx′

−
∫

x′∈D

G1(x − x′, ω)χ(x′, ω)�(α, x′, xc) dx′ − λ�(α, x, xc)

∥∥∥∥
2

D

= lim
α→∞

∥∥∥∥
[

2

3
+

1

3
εr(x) − λ

]
�(α, x, xc)

− lim
δ→0

∫
x′∈D\V (δ)

G0(x − x′)
[
εr(x′) − εr(x) + εr(x) − 1

]
�(α, x′, xc) dx′

−
∫

x′∈D

G1(x − x′, ω)
[
εr(x′) − 1

]
�(α, x′, xc) dx′

∥∥∥∥
2

D

= 0, (41)

for λ = εr(xc, ω). The L2 norm is taken over the finite spatial support D. First, we rearrange
(41) and decompose it into separate terms:

V � lim
α→∞ ‖[εr(x) − λ] �(α, x, xc)‖2

D

+ lim
α→∞

∥∥∥∥[1 − εr(x)]

[
2

3
�(α, x, xc) + lim

δ→0

∫
x′∈D\V (δ)

G0(x − x′)�(α, x′, xc) dx′
]∥∥∥∥

2

D

+ lim
α→∞

∥∥∥∥lim
δ→0

∫
x′∈D\V (δ)

G0(x − x′)[ε(x, ω) − ε(x′, ω)]�(α, x′, xc) dx′

−
∫

x′∈D

G1(x − x′, ω)[εr(x′) − 1]�(α, x′, xc) dx′
∥∥∥∥

2

D

. (42)

With εr(x, ω) Hölder-continuous in R3 all integral operators in the last term are weakly
singular. Hence, from property (vi) of theorem 1 the last term in (42) is zero.
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From the second term in (42) we only consider the expression in the large square brackets,
which we extend to R3. Denoting by F{· · ·} and F−1{· · ·} the forward and inverse three-
dimensional Fourier transforms, we obtain

2

3
�(α, x, xc) + lim

δ→0

∫
x′∈R3\V (δ)

G0(x − x′)�(α, x′, xc) dx′

= F−1

{
2

3
F {�(α, x, xc)} + F

{
lim
δ→0

∫
x′∈R3\V (δ)

G0(x − x′)�(α, x′, xc) dx′
}}

= F−1

{
2

3
�̃(α, k, xc) +

[
1

3
I − Q̃

]
�̃(α, k, xc)

}

= F−1

{
�̃(α, k, xc) − kkT

|k|2 �̃(α, k, xc)

}
= 0, (43)

where we have used the previously derived result about the Fourier transform of a simple
singular operator [7], the explicit form of �̃(α, k, xc), see property (iii), and the fact that
kTk = |k|2. Hence, the second term in (42) is also zero.

Finally, applying property (iv) of theorem 1 we see that the first term in (42) is zero, if
equality (40) holds. �

4. Conclusions

We have shown that the electromagnetic essential (singular) mode corresponding to the point
λess = ε(x, ω)/ε0 of essential spectrum is, in fact, the square root of the delta function located
at x. The unique mathematical properties of the latter are summarized in theorem 1. Hence,
the essential resonance, which may occur whenever the dielectric permittivity of an object
gets close to zero, leads to the excitation of this extremely localized mode. This happens in
plasmas, metamaterials and metals. The mathematical structure of essential modes is unusual
and, to our best knowledge, has never been analysed before. In particular, it is not clear how
exactly the energy is transferred (if it is transferred) between the normal modes of the point
spectrum and the essential modes. Elsewhere, we show that it is impossible to associate any
causal evolution with this process, and there may be a jump-like chaotic transformation [20].

Another conclusion stems from the observation that singular modes do not belong to the
Hilbert space (property (ii) of theorem 1), where all ‘proper’ solutions of the Maxwell equations
live. Hence, one may consider the excitation of singular modes as some kind of ‘deflation’ of
the electromagnetic field. Recall that, due to the normalization property (i) of theorem 1, the
electromagnetic energy associated with a singular mode is well defined. Such a disappearance
of a well-defined portion of energy from the Hilbert-space part of the electromagnetic field
may be an interesting alternative model of the electromagnetic absorption.

It is also important to note the direct relation of the electromagnetic essential spectrum
and its singular modes to the pseudospectrum and wave-packet pseudomodes [16], which was
very helpful in our work. There is an obvious similarity of the Weyl definition (2) and the
definition of the pseudospectrum, where instead of zero one should simply put a small ε on
the right-hand side of (2). Subsequently, we arrive at two distinct possibilities. The first is
where n → ∞, i.e., in our case α → ∞. Then, points λps satisfying |λps − εr(x, ω)| � ε will
belong to the pseudospectrum, while the corresponding modes will be singular. The second
case is where λps = λess = εr(x, ω) or very close to it, but α � δ(ε). In this case, we stop the
sequence of �(α, xc, x), at some finite α, for which the norm in (41) equals ε. Although it
is difficult to derive an explicit relation for δ(ε), we can anticipate that �(δ(ε), xc, x) will be
highly localized in space around the point xc. In this case the mode is not singular and belongs
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to the Hilbert space. These two physically distinct possibilities emphasize the non-unique
nature of the pseudospectrum as defined in [16] and elsewhere.
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